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Optimizing transport in a homogeneous network
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Many situations in physics, biology, and engineering consist of the transport of some physical quantity
through a network of narrow channels. The ability of a network to transport such a quantity in every direction
can be described by thaverage conductivityassociated with it. When the flow through each channel is
conserved and derives from a potential function, we show that there exists an upper bound of the average
conductivity and explicitly give the expression for this upper bound as a function of the channel permeability
and channel length distributions. Moreover, we express the necessary and sufficient conditions on the network
structure to maximize the average conductivity. These conditions are found to be independent of the connec-
tivity of the vertices.
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I. INTRODUCTION univocally define for each pipéi,j) a lengthl;, a local
cross-sectional areg;(l), and alocal permeability k(I)
Examples of transport phenomena through a network ofy 1) is function ofs;(l) and both can vary with the curvi-
channels abound in nature and engineering: blood floWinear coordinaté along the channglLet us assume that the
through the microcirculatory system, water transport throughyq,y through each channel is directly related to the gradient

the venation of a leaf, water and electricity supply in a City, f 4 potential functiorV, so theflow vector!, the permeabil-
heat conduction through an open cell material, etc. Thereﬂy andV are related by

fore, the search for a network structure optimizing the trans- | = -k ()VV (1)
port processes may be useful for a better understanding of ! '

the structure of natural networks and for the conception oMoreover, we suppose that the flow is in a steady i/
optimized materials. Different functions can be optimized,satisfies Laplace equatidf?V=0) and is conserved through
such as dissipated power, volume, or surface area of theach pipe and each junction. We then define dfssipated
channels. Different constraints can be imposed: topologypowerassociated with the flow in the network as

flow rate, volume, etc. Various models have been proposed to hj

understand the structure of natural netwofis?], mostly P:_Z I- Vvl (2)
based on the assumptionlotal optimization. The idea is to tp-0

move the position of a given junction, with the other junc- Using the assumption of steady-state flow, we can rewrite the
tions and the topology fixed, in order to optimize one of thedissipated power as

above functions. In a previous work, we consideredgloe pP= E T (3)
bal optimization of the whole network structure for its elec- (W)

trical property 3]. We showe_d the existe_npe of an Upperwhereuij andi;; are, respectively, the potential difference and
bound for the average electrical conductivity of a networkthe flow rate through the channél,j). Since the flow is

me}de of uniform wires, for a given amount of mate”al PET - onserved through each pipe and each junction, the total dis-
unit volume, and proved two necessary and sufficient condi-

: sipated power in the network is equal to the product I,
tions on the structure of the network for the upper bound tc{NEereU Fi)s the potential difference getween thepir(lecburce)

gi?) r:egfc Z?Sétx\é;t?:(e)g duuscig/itthe;‘e drrestjcl;[;r:](; dl‘“:] mt/r?etherees)é?]rt hd the outlegsink) of the network and is the crossing flow
Y y ' P rate, as for the dissipated power of an electrical network.

paper, we generalize the idea of an optimal StWCture.for?'ursuing the analogy, it follows that the actual distribution of
transport processes to networks made of non-uniform pipe,

and o anv flow process. and derive three more general nef’cl’_ow rates for a given total flow rate is the one which mini-
Y P P S 9 izes the dissipated power, and subsequently the monotonic-
essary and sufficient conditions for maximizing the transpor

; g : - ty law of Rayleigh is valid3-5] : If any of the resistances of
S(ra%%enr(tjle;ﬁ ﬁ]lg%réﬂggz’i\mi 2??ht?$;2§§§scondltlons do no circuit are increased, the effective resistance between any

Let us first denote each pipe by a pair of indides)) two points can only increase. If they are decreased, the ef-
: Pipe by a p J)  fective resistance can only decreagdthough the monoto-
corresponding to the labels of its two ends. We conside

) ¢ hich th ¢ ratio | Bicity law cannot predict the sign of the effective resistance
pipes for whic € aspect ralio Is very large, So We €an , iation when some resistances are increased and some oth-

ers are decreasedhe variation obviously depends on the
structure of the netwopk it will be helpful to determine the
*Electronic address: mdurand@deas.harvard.edu optimal geometry of a network for its transport properties.
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[~ _ channel are mostly parallel to its axisAccording to the
i monotonicity law, the conductivity of this shorted network is
higher than the conductivity of the original one. Further-

inlet outlet more, the potential is uniform on each sheet and the resis-
._(L Ly tanceAR(x) of the network slice at positior corresponds to
¥z »

the parallel association of the truncated channels that it con-
tains. Since the resistance corresponding to a given truncated
channel(i, ) is equal toAx/[k;;(I)cos ], whereq; is the

/ —\ angle between the channglj) and the axisx (the angle is
defined such that cag =0), we have

I"X
1 ki (I)cos a;;
FIG. 1. Schematic representation of a network shorted with par- F(X) = 2 P(X;Xiyxj)_uTlLa (8)
((B)]

allel sheets of infinite conductivity. The resistance of the truncated
channel(i, j) is equal toAx/[k;j(1)cosy;;]. ) _
where the sum is carried out on all the channels of the net-
II. MAXIMAL AVERAGE CONDUCTIVITY OF A work by introducing the functioP(x;x;,x) which take the
NETWORK value 1 if the channdi, j) is intersected by the equipotential
_ plane passing by (i.e., if x is betweenx; and x;) and 0
On a macroscopic scale, the network can be seen asdtherwise. The total resistance is given by the sum of the
continuous mediuma priori anisotropic, whose transport slice resistances. Using the fact that the product of the aver-
properties are described by an effective conductivity teasor age of a set of positive valud$,, f,, ... f\} by the average
- the conductivity being defined as the permeability per unitof their inverses is always greater or equal to 1,
length [two-dimensional2D) networl or per unit areg3D
network. Theaverage conductivitgssociated with this ten- 1 N 1N
sor is defined as i) =2 = =1, (9)
Ni=1 Ni=1 fi
on=(Uu-g-u), (4)
d passing to the continuum limit, we obtain a lower bound

where the brackets indicate that the term inside is averag U\ the resistance of the shorted network:

in all the directions of unit vectou. This parameter can be
simply related to the trace @f and the dimension of space

[6] by

1 - dx

== E P(x,xi,xj)kij(l)cosmj?. (10)

X 0 (i) X

1

om=Trlal. (5 . . : . .
d = We can switch the sum and integral of this expression, and it

The average conductivity characterizes the ability of the nettollows after integration that

work to transport the physical quantity associated with it in
all the directions. We shall show the existence of an upper o < iEE-I-- coLa: (11)
bound for oy, which can be expressed as a function of the X L3(i i) Y v
channel permeability and channel length distributions:
— where the conductivity of the shorted network in thdirec-

o < 1 Ky () tion is defined byo\=L,/L,L,R, L, andL, being the net-
modf L work lengths in directiony andz, andL®=L,L,L,, the vol-

d: _ ume on which the conductivity is defined. Using the same
L% is the hypervolume of the network on which the conduc-aqments in the two other directions and the fact that the
tivity tensor is defined, anld; is the average permeability of sum of the squared direct cosines is equal to 1, we see that

the channeli,j) defined by inequality(6) is true for a network made of straight channels.
I It is clear that the average conductivity of a network with
— 1 ij . . . .
ki = —f k;(hdl. (7)  curved channels is bounded, too: in this case, we can build a
lijJo new network by keeping the junctions fixed in their positions

but linked with straight channels. L&} be the length of the

We present here the demonstration for a three-dimension%k . S : .
- i raight channeli,j). We can choose its local permeability
network (d=23). We first study the case of a network made of K (1) to be equal to the local permeability of the correspond-

straight pipes: imagine that this network is shorted with thin. : . .
parallel sheets of infinite conductivity, perpendicular to the'M9 cu,rveci channel on an ar/b|trary portuquf fts length—
directionx of the applied potential difference and separateosay’ ki (1) =ky (1) for Oglglii' So the resistance of the
from each other byAx, as in Fig. 1(Ax has to be small straight channel, equal tgi'ai[dllki’j(l)], is lower than the
compared to the typical channel length, but large comparedriginal curved channel. We know the conductivity, of
to the typical channel diameter, so the flow lines in a givensuch a network is bounded:
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Lo MK - uniform along the channel, and so conditita is indeed
o <> 5 (12)  required.

Sin L The necessity of conditiongb) and (c) is proved by
On the one hand, the conductivity of this network is higher™€ans of arguments similar to those used in our previous
than the conductivityr, of the original network(from the  WOK [3: first, imagine that we change the length of a given

. i channel(i, ) of a network for which conditior{a) is satis-

monotonicity law, and on the other handyk; <l;k;, so fied, the positions of all junctions and the lengths of all the
inequality (6) holds for a network made of curved Channelsother channels remaining unaltered. To this variation of
as well. length dl;; corresponds a variation of the conductivity:

lll. OPTIMIZING TRANSPORT 1

" L%

In addition to the existence and the expression of an upper 80 kij ol 17
bound for the average conductivity, we show that the average

conductivity reaches the upper bound if and only if the fol-implying that or,, and 8l;; have the same sign. However, if

lowing three conditions are satisfied. the length of the channel is increas(eﬁuj =0), the resistance
(a) Each channel has a uniform local permeability of the channel is increased too, and it follows from the
along the channd{ij(l):?”:k”. monotonicity law that the conductivity can only decrease

(b) All the channels are straight. (80,=0). So the variation of the length has be zero at first

(c) Every junction (i) between channels satisfies Order, implying the necessity of conditiqh).
S k;&; =0, wheres, are outward-pointing unit vectors in the __NOW. imagine a network for which conditionia) and(b)
directions of adjoining channels. are satisfied. In the previous section, we showed the exis-
Note that the last condition is similar to a force balance!€nce Of an upper bound of the conductivity in the direction
equation at each vertex, the weight of the force pulling along¢ for @ network made of straight channels, by using two
a channel being proportional to its permeability. Further-SUCCESSIVE inequalities: first, the conductivity of such a net-

more, it is worth noting that the three conditions are inde-WOrK is lower than the conductivity of the same network
pendent of the connectivity of the junctions. As an i”ustra_mtersected with zero resistance sheets; second, the shorted

tive example of this property, the periodic square, hexagonaﬂet"."ork conduptivity itself is b_ounded, using the fact_that the
quivalent resistance dfl resistive elements in series ar-

and triangular networks built with a same set of channel$ ; . .
have the same conductivity. rangement is greater or equal to the equivalent resistance of

Necessity of the conditionket us suppose that the con- the same resistive elements in parallel arrangement thtfes

ductivity of the network is equal to its maximal value [inequality (9)]. So in order to get the exact upper bound,
o these two inequalities have to become strict equalities. The

1w |k first one implies that the presence of sheets does not modify
— ™ . . . . . .
Um—a(. . Ld (13 the distributions of potentials, and so the potential in the
1]

channels is a function af only. To see this, increase pro-
and let us make some infinitesimal changes in the networlgressively the resistance of the sheets up to infifitiich
structure. First, suppose we vary the local permeability of &orresponds to the initial networkFrom the monotonicity
given channeli, j) by a small amounsk;(1), without alter- law, this can only decrease the conductivity of the network.
ing its lengthl;; or its average permeabilitl;,j, so The only way for the conduct'ivity to stay at its ma_ximum
value when increasing the resistance of each sheet is by hav-
l ing no current through them, and so the potential in the chan-
fo ok;j(hdI=0. (14) nels is a function ok only. The second equality requires that
the resistance of every sli¢ef equal thicknessis the same,

Sincel; andE-j remain constant, the corresponding variation©" €quivalently, the resistance of a slice of arbitrary thickness

o, of the conductivity is zero. But obviously we can chooseX iS simply proportional tax. Hence the potential is indeed

a variation k;;(1) such that the resistance of the channel islinéar in x. Examination of flow conservation at a vertex in
increased: such a potential immediately leads to the condition

J Iij é<i>dl =0. (15 2 kjeomsgrl =) =0 49
o k() .

In order for the monotonicity law to be satisfied, the varia- [ihe term sgx;-x;) is introduced in order to safisfy cog.
tion of the resistance has to be zero, which can be mat = 0] This eqpalltylls nothing but the projection of pond|t|on
ematically expressed as (c) on the axisx. Since the same argument _hol_ds in the two
other directions, we prove that conditign) is indeed re-

hj 1 quired.
fo - k2_(|) +\ |8k (1)dI =0, (16) Sufficiency of the conditionslow consider a network for

! which conditions(a), (b), and(c) are satisfied and suppose
where\ is a Lagrange multiplier. Since this equality has tothat a potential differenc&J, is applied between the two
be true for any variatiosk; (1), it follows thatk;;(1) has to be  regarding faces orthogonal to Let us show that the trial
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potential function defined ag=-(U,/L,)x is the physical

solution. We first check that the flow is conserved at each
junction under the stated conditions: the current in thef
straight channei,j) is given by ;

U
lj=—kj V b-&=kj_e-aj, (19)
X
SO
Uy
Elij:L_ex'E kije; =0. (20)
j X j

show that the average conductivity is equal to the upper

bound. The potential is uniform on planes perpendicular to FIG. 2. Netted venation of a leg#.82 mmx 3.26 mm. The

the directionx, and so the system is unaltered when inter-angles between adjacent veins are correlated to their cross-section
sected by thin parallel sheets of infinite conductivity or-areas{10].

thogonal to that direction. We previously calculated the el-

ementary resistanc&R(x) of a slice of thicknessAx at  the average conductivity per unit volume of matdridlote
positionx for such a networKEq. (8)]. The global flow rate  that the expression of the upper bound is equivalent to the
I, the elementary resistanceR(x), and the elementary po- Hashin-Shtrikman bound for the electrical conductivity of a

tential differenceA ¢ across the slice are related by heterogenous material in the limit of small volume fraction
Ad AR of the conducting phasg¢,8].
—=—,. (21 Condition(c) leads to different optimal structures depend-
Ax  Ax ing on the kind of flow profile in the channels. In the case of

But here both the potential gradient and the global curren@ Plug flow profile with idential conductivityr, this condi-

are independent ot and so isAR/Ax. Using Eq.(8) and  tion becomes

integrating in thex direction, we finally get the expression of B

the conductivity in thex direction: El;siie'i =0. (24)

oy = idz kijlijcos’za’ij- (22) In the case of Poiseuille flow, the permeability varies like the
L™ square of the cross-sectional area. Thus, if we assume again

This expression corresponds indeed to the upper bound ct)?e same conductivityr, for every pipe, conditior(c) be-

the conductivity along, as expressed in E¢L1). The same comes

reasoning can be applied for the conductivity in the two Esz-e- -0. (25)
other directions, and so the sufficiency of conditioas (b), T

and(c) is proved. ) o .

Let us apply the preceding results to two very commonAS a concludmg remark, it is worth noting that some natural
flow profiles—namely, plug flow and Poiseuille flow. Many Networks, like leaf venationf10,11, have a very-well-
transport phenomena through pipes are described by pméeflned_structure, in the sense that the angles between adja-
flow, such as the flow of fluids in porous conducts, the flowCent Vveins are correlated to their cross-sectional afees
of heat by conduction, the electrical current, or diffusive Fig- 2). This fact presumably corresponds to some optimiza-
flow. All these flows are engendered by a gradient of a pofion principle. The conditions for transport optimization pre-
tential function(such as pressure, temperature, electric poSented here may give an explanation for these typical pat-
tential, material concentratignand the permeability for all terns. In the particular case of leaf venation, veins are
these situations is directly proportional to the cross-sectiondf0mposed of a complex tangle of smaller tulygls hence,
area. Moreover, if the conductivity has the same vatyéor W€ May expect relatio24) rather than(25) to be satisfied
all pipes(sok;; =ags;), the upper bound of the average con- (although veins are not fully impermeahléAlternatively,

ductivity simplifies to this correlation between angles and cross-section areas could
be explained by the optimization of the mechanical stability
1 of the leaf[12,13. Experimental study of the leaf venation
Om< —0ge, (23 . ) . o
d structure is subject to a current investigation to be compared

. . . with the transport optimization criteria presented in this pa-
wheree is the volume fraction of the continuous phase. As P P P P

consequence, the maximal conductivity does not depend on

the permeability and length channel distributions, but or_1|y ACKNOWLEDGMENT
on the total amount of material that the network contains
[there exists a universal upper bound of the quaritity/ &), M. D. thanks H. A. Stone for encouraging this research.
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