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Many situations in physics, biology, and engineering consist of the transport of some physical quantity
through a network of narrow channels. The ability of a network to transport such a quantity in every direction
can be described by theaverage conductivityassociated with it. When the flow through each channel is
conserved and derives from a potential function, we show that there exists an upper bound of the average
conductivity and explicitly give the expression for this upper bound as a function of the channel permeability
and channel length distributions. Moreover, we express the necessary and sufficient conditions on the network
structure to maximize the average conductivity. These conditions are found to be independent of the connec-
tivity of the vertices.

DOI: 10.1103/PhysRevE.70.046125 PACS number(s): 02.50.2r, 89.75.Hc, 89.75.Fb

I. INTRODUCTION

Examples of transport phenomena through a network of
channels abound in nature and engineering: blood flow
through the microcirculatory system, water transport through
the venation of a leaf, water and electricity supply in a city,
heat conduction through an open cell material, etc. There-
fore, the search for a network structure optimizing the trans-
port processes may be useful for a better understanding of
the structure of natural networks and for the conception of
optimized materials. Different functions can be optimized,
such as dissipated power, volume, or surface area of the
channels. Different constraints can be imposed: topology,
flow rate, volume, etc. Various models have been proposed to
understand the structure of natural networks[1,2], mostly
based on the assumption oflocal optimization. The idea is to
move the position of a given junction, with the other junc-
tions and the topology fixed, in order to optimize one of the
above functions. In a previous work, we considered theglo-
bal optimization of the whole network structure for its elec-
trical property [3]. We showed the existence of an upper
bound for the average electrical conductivity of a network
made of uniform wires, for a given amount of material per
unit volume, and proved two necessary and sufficient condi-
tions on the structure of the network for the upper bound to
be reached. We then used these results to derive the expres-
sion of electrical conductivity of dry foams. In the present
paper, we generalize the idea of an optimal structure for
transport processes to networks made of non-uniform pipes
and to any flow process, and derive three more general nec-
essary and sufficient conditions for maximizing the transport
properties. Surprisingly, we find that these conditions do not
depend on the connectivity of the junctions.

Let us first denote each pipe by a pair of indicessi , jd
corresponding to the labels of its two ends. We consider
pipes for which the aspect ratio is very large, so we can

univocally define for each pipesi , jd a length l i j , a local
cross-sectional areasijsld, and a local permeability kijsld
[kijsld is function ofsijsld and both can vary with the curvi-
linear coordinatel along the channel]. Let us assume that the
flow through each channel is directly related to the gradient
of a potential functionV, so theflow vectorI , the permeabil-
ity, andV are related by

I = − kijsld=V. s1d

Moreover, we suppose that the flow is in a steady state(soV
satisfies Laplace equation¹2V=0) and is conserved through
each pipe and each junction. We then define thedissipated
powerassociated with the flow in the network as

P = − o
si,jd
E

0

l i j

I · = Vdl. s2d

Using the assumption of steady-state flow, we can rewrite the
dissipated power as

P = o
si,jd

uij i i j , s3d

whereuij andi i j are, respectively, the potential difference and
the flow rate through the channelsi , jd. Since the flow is
conserved through each pipe and each junction, the total dis-
sipated power in the network is equal to the productU3 I,
whereU is the potential difference between the inlet(source)
and the outlet(sink) of the network andI is the crossing flow
rate, as for the dissipated power of an electrical network.
Pursuing the analogy, it follows that the actual distribution of
flow rates for a given total flow rate is the one which mini-
mizes the dissipated power, and subsequently the monotonic-
ity law of Rayleigh is valid[3–5] : If any of the resistances of
a circuit are increased, the effective resistance between any
two points can only increase. If they are decreased, the ef-
fective resistance can only decrease. Although the monoto-
nicity law cannot predict the sign of the effective resistance
variation when some resistances are increased and some oth-
ers are decreased(the variation obviously depends on the
structure of the network), it will be helpful to determine the
optimal geometry of a network for its transport properties.*Electronic address: mdurand@deas.harvard.edu
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II. MAXIMAL AVERAGE CONDUCTIVITY OF A
NETWORK

On a macroscopic scale, the network can be seen as a
continuous medium,a priori anisotropic, whose transport
properties are described by an effective conductivity tensorsII
- the conductivity being defined as the permeability per unit
length [two-dimensional(2D) network] or per unit area(3D
network). Theaverage conductivityassociated with this ten-
sor is defined as

sm = ku · sII ·ul, s4d

where the brackets indicate that the term inside is averaged
in all the directions of unit vectoru. This parameter can be
simply related to the trace ofsII and the dimension of spaced
[6] by

sm =
1

d
TrfsIIg. s5d

The average conductivity characterizes the ability of the net-
work to transport the physical quantity associated with it in
all the directions. We shall show the existence of an upper
bound forsm, which can be expressed as a function of the
channel permeability and channel length distributions:

sm ø
1

do
si,jd

l i j k̄i j

Ld . s6d

Ld is the hypervolume of the network on which the conduc-

tivity tensor is defined, andk̄i j is the average permeability of
the channelsi , jd defined by

k̄i j =
1

l i j
E

0

l i j

kijslddl. s7d

We present here the demonstration for a three-dimensional
networksd=3d. We first study the case of a network made of
straight pipes: imagine that this network is shorted with thin
parallel sheets of infinite conductivity, perpendicular to the
directionx of the applied potential difference and separated
from each other byDx, as in Fig. 1(Dx has to be small
compared to the typical channel length, but large compared
to the typical channel diameter, so the flow lines in a given

channel are mostly parallel to its axis). According to the
monotonicity law, the conductivity of this shorted network is
higher than the conductivity of the original one. Further-
more, the potential is uniform on each sheet and the resis-
tanceDRsxd of the network slice at positionx corresponds to
the parallel association of the truncated channels that it con-
tains. Since the resistance corresponding to a given truncated
channelsi , jd is equal toDx/ fkijsldcosai jg, whereai j is the
angle between the channelsi , jd and the axisx (the angle is
defined such that cosai j ù0), we have

1

DRsxd
= o

si,jd
Psx;xi,xjd

kijsldcosai j

Dx
, s8d

where the sum is carried out on all the channels of the net-
work by introducing the functionPsx;xi ,xjd which take the
value 1 if the channelsi , jd is intersected by the equipotential
plane passing byx (i.e., if x is betweenxi and xj) and 0
otherwise. The total resistance is given by the sum of the
slice resistances. Using the fact that the product of the aver-
age of a set of positive valueshf1, f2, . . . ,fNj by the average
of their inverses is always greater or equal to 1,

S 1

N
o
k=1

N

fkDS 1

N
o
k=1

N
1

fk
D ù 1, s9d

and passing to the continuum limit, we obtain a lower bound
for the resistance of the shorted network:

1

Rx
ø E

0

`

o
si,jd

Psx,xi,xjdkijsldcosai j
dx

Lx
2 . s10d

We can switch the sum and integral of this expression, and it
follows after integration that

sx
ssd ø

1

L3o
si,jd

k̄i j l i j cos2ai j , s11d

where the conductivity of the shorted network in thex direc-
tion is defined bysx

ssd=Lx/LyLzRx, Ly and Lz being the net-
work lengths in directionsy andz, andL3=LxLyLz, the vol-
ume on which the conductivity is defined. Using the same
arguments in the two other directions and the fact that the
sum of the squared direct cosines is equal to 1, we see that
inequality(6) is true for a network made of straight channels.
It is clear that the average conductivity of a network with
curved channels is bounded, too: in this case, we can build a
new network by keeping the junctions fixed in their positions
but linked with straight channels. Letl i j8 be the length of the
straight channelsi , jd. We can choose its local permeability
kij8 sld to be equal to the local permeability of the correspond-
ing curved channel on an arbitrary portionl i j8 of its length—
say, kij8 sld=kijsld for 0ø l ø l i j8 . So the resistance of the

straight channel, equal toe0
l i j8fdl /kij8 sldg, is lower than the

original curved channel. We know the conductivitysm8 of
such a network is bounded:

FIG. 1. Schematic representation of a network shorted with par-
allel sheets of infinite conductivity. The resistance of the truncated
channelsi , jd is equal toDx/ fkij sldcosai j g.
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sm8 ø
1

3o
si,jd

l i j8k8̄i j

L3 . s12d

On the one hand, the conductivity of this network is higher
than the conductivitysm of the original network(from the

monotonicity law), and on the other hand,l i j8kij8̄ ø l i j k̄i j , so
inequality (6) holds for a network made of curved channels
as well.

III. OPTIMIZING TRANSPORT

In addition to the existence and the expression of an upper
bound for the average conductivity, we show that the average
conductivity reaches the upper bound if and only if the fol-
lowing three conditions are satisfied.

(a) Each channel has a uniform local permeability

along the channelkijsld= k̄i j =kij .
(b) All the channels are straight.
(c) Every junction sid between channels satisfies

o jkijei j =0, whereei j are outward-pointing unit vectors in the
directions of adjoining channels.

Note that the last condition is similar to a force balance
equation at each vertex, the weight of the force pulling along
a channel being proportional to its permeability. Further-
more, it is worth noting that the three conditions are inde-
pendent of the connectivity of the junctions. As an illustra-
tive example of this property, the periodic square, hexagonal,
and triangular networks built with a same set of channels
have the same conductivity.

Necessity of the conditions. Let us suppose that the con-
ductivity of the network is equal to its maximal value

sm =
1

do
si,jd

l i j k̄i j

Ld , s13d

and let us make some infinitesimal changes in the network
structure. First, suppose we vary the local permeability of a
given channelsi , jd by a small amountdkijsld, without alter-

ing its lengthl i j or its average permeabilityk̄i j , so

E
0

l i j

dkijslddl = 0. s14d

Sincel i j andk̄i j remain constant, the corresponding variation
dsm of the conductivity is zero. But obviously we can choose
a variationdkijsld such that the resistance of the channel is
increased:

E
0

l i j

dS 1

kijsld
Ddl ù 0. s15d

In order for the monotonicity law to be satisfied, the varia-
tion of the resistance has to be zero, which can be math-
ematically expressed as

E
0

l i j S−
1

kij
2sld

+ lDdkijslddl = 0, s16d

wherel is a Lagrange multiplier. Since this equality has to
be true for any variationdkijsld, it follows thatkijsld has to be

uniform along the channel, and so condition(a) is indeed
required.

The necessity of conditions(b) and (c) is proved by
means of arguments similar to those used in our previous
work [3]: first, imagine that we change the length of a given
channelsi , jd of a network for which condition(a) is satis-
fied, the positions of all junctions and the lengths of all the
other channels remaining unaltered. To this variation of
lengthdl i j corresponds a variation of the conductivity:

dsm =
1

Ldd
kijdl i j , s17d

implying thatdsm anddl i j have the same sign. However, if
the length of the channel is increasedsdl i j ù0d, the resistance
of the channel is increased too, and it follows from the
monotonicity law that the conductivity can only decrease
sdsmø0d. So the variation of the length has be zero at first
order, implying the necessity of condition(b).

Now, imagine a network for which conditions(a) and(b)
are satisfied. In the previous section, we showed the exis-
tence of an upper bound of the conductivity in the direction
x for a network made of straight channels, by using two
successive inequalities: first, the conductivity of such a net-
work is lower than the conductivity of the same network
intersected with zero resistance sheets; second, the shorted
network conductivity itself is bounded, using the fact that the
equivalent resistance ofN resistive elements in series ar-
rangement is greater or equal to the equivalent resistance of
the same resistive elements in parallel arrangement timesN2

[inequality (9)]. So in order to get the exact upper bound,
these two inequalities have to become strict equalities. The
first one implies that the presence of sheets does not modify
the distributions of potentials, and so the potential in the
channels is a function ofx only. To see this, increase pro-
gressively the resistance of the sheets up to infinity(which
corresponds to the initial network). From the monotonicity
law, this can only decrease the conductivity of the network.
The only way for the conductivity to stay at its maximum
value when increasing the resistance of each sheet is by hav-
ing no current through them, and so the potential in the chan-
nels is a function ofx only. The second equality requires that
the resistance of every slice(of equal thickness) is the same,
or equivalently, the resistance of a slice of arbitrary thickness
x is simply proportional tox. Hence the potential is indeed
linear in x. Examination of flow conservation at a vertex in
such a potential immediately leads to the condition

o
j

kijcosai jsgnsxi − xjd = 0 s18d

[the term sgnsxi −xjd is introduced in order to satisfy cosai j

ù0]. This equality is nothing but the projection of condition
(c) on the axisx. Since the same argument holds in the two
other directions, we prove that condition(c) is indeed re-
quired.

Sufficiency of the conditions. Now consider a network for
which conditions(a), (b), and (c) are satisfied and suppose
that a potential differenceUx is applied between the two
regarding faces orthogonal tox. Let us show that the trial
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potential function defined asf=−sUx/Lxdx is the physical
solution. We first check that the flow is conserved at each
junction under the stated conditions: the current in the
straight channelsi , jd is given by

I ij = − kij ¹ f ·ei j = kij
Ux

Lx
ex ·ei j , s19d

so

o
j

I i j =
Ux

Lx
ex ·o

j

kijei j = 0. s20d

The trial potential function also satisfies the boundary con-
ditions and so is the correct physical solution. Now we can
show that the average conductivity is equal to the upper
bound. The potential is uniform on planes perpendicular to
the directionx, and so the system is unaltered when inter-
sected by thin parallel sheets of infinite conductivity or-
thogonal to that direction. We previously calculated the el-
ementary resistanceDRsxd of a slice of thicknessDx at
positionx for such a network[Eq. (8)]. The global flow rate
Ix, the elementary resistanceDRsxd, and the elementary po-
tential differenceDf across the slice are related by

Df

Dx
=

DR

Dx
Ix. s21d

But here both the potential gradient and the global current
are independent ofx and so isDR/Dx. Using Eq.(8) and
integrating in thex direction, we finally get the expression of
the conductivity in thex direction:

sx =
1

Ldo
si,jd

kij l i jcos2ai j . s22d

This expression corresponds indeed to the upper bound of
the conductivity alongx, as expressed in Eq.(11). The same
reasoning can be applied for the conductivity in the two
other directions, and so the sufficiency of conditions(a), (b),
and (c) is proved.

Let us apply the preceding results to two very common
flow profiles—namely, plug flow and Poiseuille flow. Many
transport phenomena through pipes are described by plug
flow, such as the flow of fluids in porous conducts, the flow
of heat by conduction, the electrical current, or diffusive
flow. All these flows are engendered by a gradient of a po-
tential function(such as pressure, temperature, electric po-
tential, material concentration), and the permeability for all
these situations is directly proportional to the cross-sectional
area. Moreover, if the conductivity has the same values0 for
all pipes(so kij =s0sij), the upper bound of the average con-
ductivity simplifies to

sm ø
1

d
s0«, s23d

where« is the volume fraction of the continuous phase. As a
consequence, the maximal conductivity does not depend on
the permeability and length channel distributions, but only
on the total amount of material that the network contains
[there exists a universal upper bound of the quantityssm/«d,

the average conductivity per unit volume of material]. Note
that the expression of the upper bound is equivalent to the
Hashin-Shtrikman bound for the electrical conductivity of a
heterogenous material in the limit of small volume fraction
of the conducting phase[7,8].

Condition(c) leads to different optimal structures depend-
ing on the kind of flow profile in the channels. In the case of
a plug flow profile with idential conductivitys0, this condi-
tion becomes

o
j

sijei j = 0. s24d

In the case of Poiseuille flow, the permeability varies like the
square of the cross-sectional area. Thus, if we assume again
the same conductivitys0 for every pipe, condition(c) be-
comes

o
j

sij
2ei j = 0. s25d

As a concluding remark, it is worth noting that some natural
networks, like leaf venation[10,11], have a very-well-
defined structure, in the sense that the angles between adja-
cent veins are correlated to their cross-sectional areas(see
Fig. 2). This fact presumably corresponds to some optimiza-
tion principle. The conditions for transport optimization pre-
sented here may give an explanation for these typical pat-
terns. In the particular case of leaf venation, veins are
composed of a complex tangle of smaller tubes[9]; hence,
we may expect relation(24) rather than(25) to be satisfied
(although veins are not fully impermeable). Alternatively,
this correlation between angles and cross-section areas could
be explained by the optimization of the mechanical stability
of the leaf[12,13]. Experimental study of the leaf venation
structure is subject to a current investigation to be compared
with the transport optimization criteria presented in this pa-
per.
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FIG. 2. Netted venation of a leafs4.82 mm33.26 mmd. The
angles between adjacent veins are correlated to their cross-section
areas[10].
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